Pesquisar este blog

quinta-feira, 26 de abril de 2012

Alótropos de carbono Diamante, grafite, fulerenos, negro de fumo etc.


Autor: Júlio César de Carvalho*
Especial para a Página 3 Pedagogia & Comunicação
UOL EDUCAÇÃO
O que o duro diamante, o macio grafite e os exóticos fulerenos e nanotubos apresentam em comum? São todos alótropos do carbono, isto é, substâncias simples diferentes, compostas por um único tipo de elemento. Veja a tabela a seguir:
Alótropo
Fórmula
Estrutura
Negro de fumoCn (estrutura aleatória, com predominância de carbono sp2)
GrafiteCn (folhas paralelas de anéis aromáticos unidos)
DiamanteCn (cristais com carbono sp3)
FulerenosC60 é o mais comum, mas existem dezenas de outras moléculas, como C20 e C70.
Nanotubos de carbonoCn, são tubos com estrutura semelhante às folhas de grafite.

Esses alótropos apresentam em comum uma outra coisa: têm uma infinidade de usos, graças às suas propriedades únicas. Vamos detalhar um pouco desses usos e propriedades:

Carbono amorfo é pigmento preto

O carbono amorfo é uma forma semelhante ao grafite, mas com muitos "defeitos", isto é, sem as extensas folhas que aparecem no grafite. Pode ser preparado de várias formas (e com diferentes graus de pureza), desde a captura de fuligem (o negro de fumo) até a carbonização de material vegetal ou animal, que leva a carvões ativados. Seus usos principais são como pigmento preto, em tintas, alimentos e outros materiais como pneus; e como material desodorizante e filtrante para água e gases, em máscaras.

Grafite tem escrita até no nome

O grafite é composto de extensas camadas de átomos de carbono, que formam folhas com anéis unidos - mais ou menos como uma tela. Essas "telas" de carbono deslizam facilmente umas sobre as outras, e ao escrever com um lápis de grafite o rastro deixado é feito dessas camadas, que vão se espalhando quando o lápis é atritado com o papel. O nome desse mineral vem, justamente, do grego "graphos" que significa escrita. Essa mesma propriedade "deslizante" do grafite permite que ele seja usado como lubrificante, especialmente em altas temperaturas - já que o material resiste a mais de 3000oC antes de começar a fundir. Pelo mesmo motivo e também por conduzir eletricidade com razoável facilidade, o grafite pode ser usado como eletrodo para fornos elétricos, onde conduz corrente elétrica suficiente para fundir metais.

Diamante não é para sempre

Diamantes são a substância natural mais dura que se conhece. São densos e transparentes, quando puros, com um alto índice de refração que espalha a luz com mais eficiência que um prisma de vidro (especialmente depois de habilmente lapidado). Devido à sua dureza, são tradicionalmente usados para cortar outros materiais, e mais recentemente têm sido fabricadas finas camadas de diamante para proteger superfícies muito especiais. Ainda por cima, são isolantes elétricos e excelentes condutores de calor. Mas diamantes não são para sempre, já que, sendo de carbono, podem queimar em chamas suficientemente quentes, em presença de O2.

Fulerenos são bolinhas de carbono

Os fulerenos são o único alótropo molecular do carbono, ou seja, não são formas com milhares de átomos aglomerados. São minúsculas bolinhas com números determinados de átomos de carbono. O C60 é o mais comum, mas existem dezenas de outras moléculas, como C20 e C70. Foram descobertos em 1985, quando cientistas investigavam os tipos de macromoléculas de carbono que poderiam se formar em nebulosas no espaço. Hoje se sabe que há traços de fulerenos em fuligens e em alguns minerais. Ainda não há aplicações comerciais, mas muitas aplicações potenciais.

Nanotubos são fruto da pesquisa com fulerenos

A pesquisa com fulerenos valeu o Nobel aos pesquisadores, em 1996. E animou o ramo dos alótropos de carbono: hoje há milhares de pesquisadores trabalhando com uma outra forma inusitada de carbono, os nanotubos. Imagine que uma daquelas conhecidas "folhas" de grafite é enrolada na forma de um tubo. Ora, um nanotubo é mais ou menos isso, podendo ser de parede simples, dupla ou múltipla, aberto ou fechado. Esses tubos são quase unidimensionais (possuem um comprimento muito, muito superior à largura) e há diversos protótipos de circuitos eletrônicos, dispositivos e materiais contendo nanotubos. Os prognósticos de produtos para a área médica são muito interessantes. Como se pode ver, o carbono, esse elemento tão conhecido da humanidade, ainda reserva muitas surpresas para o futuro.

terça-feira, 10 de abril de 2012

Energia solar transforma CO2 em combustível para carros

Energia solar transforma CO2 em combustível para carros: Já pensou em usar eletricidade para abastecer seu carro, mesmo que você não tenha um carro elétrico?


Redação do Site Inovação Tecnológica - 10/04/2012

Eletricidade para carros
Carros elétricos não são aviões, mas eles certamente já teriam decolado se a tecnologia das baterias não estivesse praticamente estacionada nos últimos anos.
Mas está tomando corpo uma ideia que parece estranha à primeira vista, mas que tem potencial não apenas para explorar a energia solar, como também para alimentar os carros a combustão atuais com um combustível que será, essencialmente, gerado por eletricidade.
A ideia consiste em armazenar a eletricidade em combustíveis líquidos, que poderão então ser queimados por motores a combustão normais.
Ou seja, os carros poderiam ser indiretamente alimentados por eletricidade, sem que precisassem ser convertidos em veículos elétricos.
E o alcance disso pode ser ainda maior, uma vez que a fonte para a produção desse combustível líquido é o dióxido de carbono, que todo o mundo gostaria de varrer para debaixo do tapete - ao menos a parte gerada pelo homem - para tentar evitar o aquecimento global.
Uma demonstração de que isto é tecnicamente possível foi realizada pela equipe do Dr. James Liao, da Universidade da Califórnia em Los Angeles (EUA).

CO2 vira combustível
Liao e seus colegas desenvolveram uma técnica que usa eletricidade para converter dióxido de carbono em isobutanol.
Se for usada energia solar, o processo essencialmente imita a fotossíntese, convertendo a luz do Sol em energia química.
A fotossíntese é um processo que ocorre em duas etapas - uma etapa com luz e uma etapa às escuras. A reação clara converte a energia da luz em energia química, enquanto a reação escura converte CO2 em açúcar.
"Nós conseguimos separar a reação com luz da reação escura e, em vez de usar a fotossíntese biológica, nós usamos painéis solares para converter a luz do Sol em eletricidade, depois em um intermediário químico, e então usamos esse intermediário para alimentar a fixação do dióxido de carbono para gerar o combustível," explica Liao.
Segundo ele, seu esquema pode teoricamente ser mais eficiente, em termos da energia produzida, do que a fotossíntese natural.

Biorreator

Nem tudo é artificial nesse novo método. Os cientistas modificaram geneticamente um microrganismo litoautotrófico, conhecido como Ralstonia eutropha H16, para produzir isobutanol e 3-metil-1-butanol no interior de um biorreator.
O biorreator usa apenas dióxido de carbono como fonte de carbono, e apenas eletricidade como entrada externa de energia.
O desenvolvimento agora anunciado é um passo significativo em relação a uma pesquisa anterior divulgada pelo grupo, quando eles demonstrar o papel promissor das bactérias para a produção de um combustível alternativo.
Teoricamente, o hidrogênio produzido por energia solar pode ser usado na conversão do CO2 para sintetizar combustíveis líquidos com alta densidade de energia, também usando os microrganismos geneticamente modificados.
Mas as demonstrações em laboratório não têm conseguido passar para escalas maiores devido à baixa solubilidade, pequena taxa de transferência de massa e, sobretudo, pelas questões de segurança envolvendo o hidrogênio.
"Em vez de usar hidrogênio, nós usamos o ácido fórmico como intermediário. Nós usamos eletricidade para produzir ácido fórmico, e então usamos o ácido fórmico para induzir a fixação do CO2 nas bactérias, no escuro, para produzir isobutanol e alcoóis," explica Liao.
"Nós demonstramos o princípio, e agora queremos aumentar sua escala. Este é o nosso próximo passo," conclui o pesquisador.

terça-feira, 3 de abril de 2012

Oficinas sobre História da Ciência serão realizadas a partir do dia 31 de março





A Pontifícia Universidade Católica (PUC-SP) oferece a Oficina História da Ciência no dia 31 de março, das 14 horas às 17 horas no Campus Marquês de Paranaguá, localizado na Rua Caio Prado, nº 102, Anfiteatro, 1º Andar. A entrada é gratuita e a oficina ainda será desenvolvida em outras duas datas: 14 de abril (9h às 12h) e 5 de maio (14h às 17h). É necessário fazer inscrição por e-mail informando a data escolhida para oficinashc@pucsp.br .